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Abstract 

Elliptic Curve Cryptography plays a vital role in securing the information for the past two decades. Implementing ECC in hardware is 
more efficient than software. A processor is said to be compact, if its implementation space is small compared to its execution speed 
and is scalable if this processor is used with different key sizes. Different metrics such as execution time, implementation space and 
energy consumption are used to quantitatively measure the performance of ECC processor. This ECC processor consumes 87 %, 92 
% of the I/O pins from Quartus 10.1 Arria GX namely EP1AGX50DF1152C6, Cyclone III namely EP3C40F780C6 respectively. This 
also consumes the power of 671.12 mW in 44 ms and 150.39 mW in 40 ms from Quartus 10.1 Arria GX namely 
EP1AGX50DF1152C6, Cyclone III namely EP3C40F780C6 respectively. 

 
Introduction 

Information security is of the greatest 
importance in a world in which communication 
over open networks and storage of data in digital 
form play a key role in daily life. The science of 
cryptography provides efficient tools to secure 
information. Elliptic curve cryptography (ECC) 
has drawn more and more attention due to the fact 
that its selected key length can be smaller than 
that in RSA cryptosystems for the same level of 
security. Literature has shown that ECC is the 
most widely used public-key cryptosystem, which 
allows much useful functionality such as digital 
signature, public-key encryption, and key 
agreements.  

Elliptic curve cryptography (ECC) was 
independently proposed in 1985 by Neal Koblitz 
and Victor Miller. ECC is indeed an attractive 
solution as the public-key scheme. However, the 
computation involved in the scalar multiplication 
for an elliptic curve is time consuming and more 
complex than that in RSA. Due to its many 
advantages, ECC has been adopted by many 
standards, such as National Institute of Standards 
and Technology NIST and Standards for Efficient 
Cryptography Group SECG.  

In many applications ,a software 
implementation of ECC might be appropriate, but 
in some cases better performances are required 
and consequently hardware implementations 
should be used instead. As the popularity of ECC 
increases, the need for efficient hardware 

solutions that accelerate the computation of 
elliptic curve point multiplications also increases. 

 
Background  
 
 Elliptical curve cryptography (ECC) is 
a public key encryption technique based 
on elliptic curve theory that can be used to create 
faster, smaller, and more efficient 
cryptographic keys. ECC generates keys through 
the properties of the elliptic curve equation instead 
of the traditional method of generation as the 
product of very large prime numbers. The 
technology can be used in conjunction with most 
public key encryption methods, such as RSA and 
Diffie-Hellman. According to some researchers, 
ECC can yield a level of security with a 164-bit 
key that other systems require a 1,024-bit key to 
achieve. Because ECC helps to establish 
equivalent security with lower computing power 
and battery resource usage, hence it is becoming 
widely used for mobile applications. 

 An elliptic curve is not an ellipse (oval 
shape), but is represented as a looping line 
intersecting two axes. ECC is based on properties 
of a particular type of equation created from the 
mathematical group (a set of values for which 
operations can be performed on any two members 
of the group to produce a third member) derived 
from points where the line intersects the axes. 
Multiplying a point on the curve by a number will 
produce another point on the curve, but it is very 
difficult to find what number was used, even if 
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you know the original point and the result. 
Equations based on elliptic curves have a 
characteristic that is very valuable for 
cryptography purposes. They are relatively easy to 
perform, and extremely difficult to reverse. The 
industry still has some reservations about the use 
of elliptic curves. 

Galois Field 

Galois field arithmetic plays a critical role 
in elliptic curve cryptography implementation 
because it’s the core of ECC scalar multiplication. 
Finite Field or Galois Field is a set of finite 
number of elements, denoted as GF(q). Every 
element in GF(2n) can be represented as a 
polynomial A(x) = anxn-1 + … + a0 with 
coefficients ai €{0,1}.So, more efficient 
implementation of underlying field operations 
results more efficient in the overall algorithm. 
Galois fields suitable for ECC implementation 
divides into two categories as prime field and 
binary field. Binary Galois field is preferred in 
hardware because of free carry propagation 
property in hardware which make addition 
operation only done with one n-bit XOR operation 
(equal to bit wise addition modular 2).     
                                                    
Point Multiplication on Elliptic Curves 
 

The Elliptic Curve Crypto Processor 
computes elliptic curve point multiplications for 
arbitrary curves defined over GF(p). An scalar 
multiplication kP is the result of adding the point 
P € E ( K ) to itself k – 1 times.  

 kP = P + P + P + …. + P         (1)                                                  
        

                                 k – 1 sums 

By scalar multiplication or point 
multiplication we perform the combination of 
additions and doublings of points to compute kP 
for given k and P. There are several methods like 
the additive variant of repeated squaring or 
addition-subtraction chains which do this task 
using O(logm) doublings and additions .Point 
multiplication is achieved by two basic elliptic 
curve operations such as 
• Point addition, adding two points P and Q to 

obtain another point,  
    i.e., P + Q 
• Point doubling, adding a point P to itself to 

obtain another point R=2P. 

 
Point Addition 

  
Figure 1 : Point Addition                
Point addition is defined geometrically by 

the “chord-tangent" law of composition. To add 
two distinct points P and Q on an elliptic curve a 
chord is drawn between then and the third point of 
intersection of this line with the curve is reflected 
through the x axis. 
 
Point Doubling 

Adding a point P to itself (doubling P) is 
performed in a similar manner. In this case the 
tangent to the curve at P is taken. This line 
intersects the curve at exactly one other point 

 

  
Figure 2 : Point Doubling      

which is then reflected through the x axis. This 
reflection is P + P = 2P.  Point scalar 
multiplication is performed by successive 
doublings and additions of the base point P. 
 
Algorithm 
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The main operation in ECC is the elliptic 
curve point multiplication (ECPM). One of the 
ways to compute ECPM is proposed by Lopez and 
Dahab. The main advantage of this algorithm is 
that it does not have any extra storage 
requirements; the same operations are performed 
in every-iteration of the main loop, thereby 
potentially increasing resistance of timing attacks 
and power analysis attacks .The Lopez-Dahab 
Algorithm is given as follows , 

 
Require: k = (kt−1, k1 ,k0)with kt−1 = 1, P(x, y), b-

curve specific coefficient 

Ensure: Q( x0, y0 ) = kP 

(X1, Z1) ← (x, 1), 

 (X2, Z2) ←  (x4 + b, x2) 

if k t−2 = 1 then 

Swap(X1, X2), Swap(Z1, Z2) 

end if 

for i from t − 2 down to 0 do 

// Madd 

X2←  X1Z2X2Z1 + x(X1Z2 + X2Z1)2 

Z2←  (X1Z2 + X2Z1)2 

// Mdouble  

X1 ←   X1
4 +  bZ1

4 

Z1  ←   X1
2 Z1

2
 

if (i ≠ 0andk i ≠  ki−1) or (i = 0andki = 1) then 

Swap(X1, X2), Swap(Z1, Z2) 

end if 

end for 

// Mxy 

x0 ← X1∕Z1 

y0←(xZ1+X1)(Z1Z2(x2+y)+(xZ1+X1)(xZ2+                    

X2))+xyZ1
2 Z2/( xZ1

2Z2) 

return Q(x0,  y0) 

 

Architecture of ECC Processor  

The functional units of the ECC processor 
are Modular Multiplier, a Squarer unit, Point 

Addition Unit, Point Multiplication unit, RAM 
and Control units. This design utilizes carry-free 
adders (carry-save adders) as the fundamental 
arithmetic unit in all field operations. Carry-free 
adders that can be used to implement all field 
operations are very fast since carries do not 
propagate. Finite field arithmetic unit based on 
carry-free adders were utilized in different 
cryptographic applications 

Figure 3 shows the implementation of the 
finite field arithmetic unit by carry-free adder 
units. 

 

 

Figure 3 : Finite Field Arithmetic Unit 

. 
Finite field (FF) operations are the 

fundamental building blocks in implementing 
ECC operations such as FF addition ,FF squaring , 
FF multiplication and FF inversion . Among these 

Family Arria GX Cyclone IV 
E 

Cyclone III Cyclone II 

Device EP1AGX9
0EF1152C
6 

EP4CE30F
29C6 

EP3C40F78
0C6 

EP2C70F8
96C6 

Therma
l Power 
Dissipa
tion 

843.20 
mW 

199.45 mW 150.39 mW 251.70 
mW 

Total 
I/O 
Resour
ce used 

81 % 92 % 84 % 79 %  

Total 
CPU 
time 

00:00:55 00:00:43 00:00:40 00:00:41 
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operations, FFADD can be implemented using a 
bit-wise exclusive-OR (XOR) operation. 

 
Experimental and Synthesis Result 

The proposed scalable ECP has been 
implemented using the Quartus 10.1 software. The 
target FPGAs selected were Arria GX 
EP1AGX90EF1152C6, Cyclone II 
EP2C70F896C6, Cyclone III EP3C40F780C6, 
Cyclone IV EP4CE30F29C6, in order to compare 
to other designs in the current literature. These 
devices were chosen instead from the family of 
devices because there are not  
enough resources to fully implement this proposed 
design. However, the FPGAs are in the same 
family, so they can still be compared. The 
implementation results of the proposed design are 
shown in Table I along with performance of other 
scalable ECP designs in the current literature. 

 
Table I : Performance Analysis for 163 bit 

Elliptic Curve Point Multiplication 

 

Figure 4 : Synthesis Result for 163 bit Elliptic 

Curve Point Multiplication 

Conclusion and Future Work 
 

Hardware implementation of Elliptic 
Curve Cryptography encryption engine has been 
shown in this paper. The system is designed using 
VHDL and synthesized using Quartus. For 163 

bits key length, the system consumes around 80% 
of the device resources  and performs the point 
multiplication operation in 40s. This is much 
faster than the software implementation, where 
about 120 ms is required for the same operation. 
In summary, it is shown that elliptic curve 
cryptosystem can be efficiently implemented on a 
commercial FPGA, resulting in very flexible 
implementation with increased speed performance 
over the software solution. 
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